
Testpoints

Enterprise Architect
User Guide Series

Author: Sparx Systems

Date: 15/07/2016

Version: 1.0

CREATED WITH

Table of Contents

Testpoints 3
Test Domain Diagram 7

Test Cut 9
Test Set 10
Test Suite 11

The Testpoints Window 12
Testpoints Toolbar 14
Testpoint Editor 16
Testpoint Constraints 18

User Guide - Testpoints 15 July, 2016

Testpoints

Testpoints present a scheme by which constraints and rules governing the behavior of objects can be taken from the
model and applied to one or more applications. The advantages schemes such as this offer are tolerance to code changes -
adding and subtracting lines from a function has no effect on the constraints that govern it. Another advantage is that
changes to the behavioral rules do not require a corresponding change to any source code; meaning nothing has to be
re-compiled!

Also, the ability to verify multiple applications using a single test domain is a simple rather than onerous matter. The
Test Domain is a both a logical and relational model; constraints in the Class model can be partitioned with Test Cuts.
These can be aggregated simply into Test Sets and Test Suites using connectors. Due to the decoupling of the Test
Domain from the codebase, it is a simple choice of buttons to run a program normally, or run it for a specific Test
Domain. This system also delivers practical benefits in that no instrumentation is required at all. Test results are
displayed in the report window during the run, in real-time, as the program runs. These results can be retained, and
reviewed at any time in the Test management window Alt+3 or using EA's documentation features.

Topics

Topic Detail

Testpoint Composition Testpoint composition is performed using the Testpoint Window. The Testpoint
Window is context-sensitive and displays the Test Domain for the selected element
in either the Project Browser or diagram. Selecting a single Class will display the
Class structure. A 'pencil' icon is displayed against Classes and methods that have
existing constraints.

When you select a Test Cut, Set or Suite Test, the Testpoint window displays the
entire Domain structure including all the Classes that make up the domain. Note:
You can navigate the domain hierarchy using the 'Navigation' pane on the right.
Testpoints are composed as expressions using the variable names of the Class
members. The intelli-sense shortcut Ctrl+Space is available within the editor to
help you find these. Expressions that evaluate to True are taken to mean a pass.
Returning False is taken to mean a fail.

(c) Sparx Systems 2015 - 2016 Page 3 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

You can add or edit an existing Invariant by double-clicking the Class.

You can add or edit an existing pre- or post- condition similarly by double-clicking
the method.

Double clicking a Testpoint will automatically display the source code if it is
available.

Line conditions are best added from within the code editor using its shortcut menus.

This image is of a pre-condition in the above Test domain.

Testpoint Trace Statements Each Testpoint can have its own Trace statement. The Trace statement is a
dynamic message that can reference variables in it's object or local scope. They are
output during the evaluation of a test. They can be configured to be output every
time a constraint is evaluated, or more usually when a test has failed. Trace
statements can be directed to the 'Testpoints' tab of the System Output Window,
or to an external file. You can configure this in any Analyzer Script.

(c) Sparx Systems 2015 - 2016 Page 4 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Test Domain Composition The Test Domain diagram is a dynamic medium where Testpoints are assembled to
test Use Cases. Use Cases in a Test Domain diagram are provided in three different
stereotypes: Test Cut, Test Set and Test Suite. Management of the domain is as
easy as modeling on any diagram. The toolbox and shortcut menus provide access
to any Test Domain Artifacts. In brief, Testpoints from multiple Classes are
aggregated into Test Sets. Test Sets are then linked to form Test Suites. Both Test
Cuts and Test Sets are re-usable assets. Linking the same Test Set to the one or
more Test Suites is a matter of drawing connectors.

«testset»
Sell Stock

«testcut»
Sell Account

«testcut»
Sell Broker

«testcut»
Sell Stock

Exchange::
Account

Exchange::
Stock

Broker::
Broker

Test Domain and the Class
Model

Rarely would a Use Case involve all the methods of a single Class. Most likely it is
realized using a variety of methods from collaborating Classes. We call this subset
of methods a cut and the Test Cut Artifact is the tool we use to make these cuts. The
Testpoint Window will adapt depending on the context, be that a Test Domain or
Class element. This image shows the Testpoint window when a Test Cut has been
selected. Note the checkboxes. These are only visible for a Test Cut. They denote
the methods (Test Cut) which are contributing to a Test Set. In this example the
Test domain was generated by the Execution Analyzer, which did the method
identification work for us.

Testpoint Evaluation The Testpoint window is where Test domains are evaluated. The window has a
toolbar for starting or attaching to the target application. The domain to test is
always reflected by the element that has context, so if you select a Class the
window will show only the Class structure and Testpoints of that Class. If you
select a Test Suite, the window will display the entire domain hierarchy and all the

(c) Sparx Systems 2015 - 2016 Page 5 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Testpoints covered by it. Clicking on the Run button will load the Testpoint
domain in the Execution Analyzer, which will then evaluate, collect and update the
report window as Use Cases pass or fail each test. The exact details of each
constraint type and the when and how of that constraint's capture are:

A Class Invariant is evaluated by the Analyzer whenever any method called on·
an object of this Class type is completed; the invariant serves to test that the
state of a complying object is both known and permitted

Pre-conditions are evaluated immediately before an operation is called·
Post-conditions are evaluated (at the same time as a Class invariant) when the·
method is completed

Line-conditions are evaluated if and when their specific line of code comes into·
scope during program execution

Learning Center topics

Alt+F1 | Enterprise Architect | Execution Analysis | Testpoints | Introducing Testpoints·

(c) Sparx Systems 2015 - 2016 Page 6 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Test Domain Diagram

The Test Domain diagram is the medium where you assemble and group test cases for a particular domain. An example
of a Test domain might be 'Customer'. The breadth and depth of the domains you assemble is up to you. You might have
separate domains for 'Add Customer' and 'Delete Customer', depending entirely on how you consider best to balance the
domain hierarchy. The diagram toolbox and shortcut menu provide a number of Artifacts to help model the domain.
Because the medium is dynamic, allowing you to revisit and build on relationships between Test domains, the system is a
great model for delivering reusable assets to a organization that are low overhead and integrate with both the UML view
of the world, and the Software Engineering nuts and bolts of daily life.

Learning Center topics

Alt+F1 | Enterprise Architect | Execution Analysis | Testpoints | Add Test Cut·
Alt+F1 | Enterprise Architect | Execution Analysis | Testpoints | Add Test Set·
Alt+F1 | Enterprise Architect | Execution Analysis | Testpoints | Add Test Suite·

Topics

Topic Detail

Test Domain Generation If you think the process of composing a Test Domain is complex, it can be, but help
is at hand! The Execution Analyzer can produce a Test Domain diagram for you. It
cannot write the Tests for you, but it can do some of the leg work. It can identify
the Classes and pick out only those methods that participated in a Use Case. And
this is not guesswork. The Analyzer Test Domain is obtained from a running
program. This image shows the Test Domain generated by the Execution Analyzer
from recording an Example Model program.

«testset»
Buy Stock

«testcut»
Buy Account

«testcut»
Buy Exchange

«testcut»
Buy Sector

«testcut»
Buy Broker

«testcut»
Buy Stock

And this is the recording itself (as a Sequence diagram) from which the Test
Domain was generated.

(c) Sparx Systems 2015 - 2016 Page 7 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Broker: Broker Exchange.Exchange Exchange.Stock:
Stock

Exchange.Account:
Account

Exchange.Sector

Sequence diagram
generated in Enterprise
Architect using recording
marker in a Use Case

Credit(2, 100, -100)

GetStockVolume(): UINT

GetSector(secEquities): Sector*

Buy(1, 2, 100): bool

GetStockCost(): FLOAT

GetBalance(): INT

Move(100)

FindAccount(1): Account*

UpdateSector(secEquities, 100)

FindStock(2): Stock*

GetSector(): ESector

Test Domain Composition The first task on a Test domain diagram is to create the Use Cases (Test Sets).
These define this particular domain's responsibility. The Diagram Toolbox and
shortcut menu provide Artifacts to help you achieve this. The first of these is the
Test Cut and this is used in the next step; identifying those methods (from the class
model) that you consider to be participants in the Use Case. The Test Cut Artifact is
useful because its allows us to partition a Class, selecting only those methods which
are relevant. Test Cuts can be run individually or link to one or more Test Sets. Test
Sets in turn can be linked to one or more Test Suites. In any case, any element of
the Test domain tree can be run individually or as a whole.

«testsuite»
Trade Stock

(from Buy)

«testset»

Buy Stock

(from Sell)

«testset»
Sell Stock Test Set generated

from recording history
of the Exchange::Sell
Use Case

Test Set generated
from recording history
of Exchange:Buy Use
Case

(c) Sparx Systems 2015 - 2016 Page 8 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Test Cut

Description

A Test Cut element is a stereotyped Object element, used internal to Enterprise Architect for defining test sets using the
Testpoint code testing facilities.

A task, such as 'Print', might involve operations on different Classes. In order to create a 'Print' test, you would want to
include only the 'Print' operations of these Classes and exclude any other operations.

A Test Cut enables you to capture only the operations that represent the behavior (in this case, 'Print') defined for a single
Class. You might then place the Test Cut from each of several Classes into a single task as a Test Set.

When you drag a Test Cut element onto a Test Domain diagram, you create a Dependency relationship with the required
Class element. As a result, when you select the Test Cut element on the Testpoints Window, the operations of the Class
are listed in the window, each with a checkbox. You then select the checkbox against each Class operation to include in
the Test Cut.

Toolbox icon

Learning Center topics

Alt+F1 | Enterprise Architect | Execution Analysis | Testpoints | Add Test Cut·

(c) Sparx Systems 2015 - 2016 Page 9 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Test Set

Description

A Test Set element is a stereotyped Use Case element used to aggregate one or more groups of methods (Test Cuts),
which perhaps span multiple Classes, into a single task. Test Sets can also be aggregated into Test Suites.

You link the Test Cut elements to the Test Set using Dependency connectors.

Toolbox icon

Learning Center topics

Alt+F1 | Enterprise Architect | Execution Analysis | Testpoints | Add Test Set·

(c) Sparx Systems 2015 - 2016 Page 10 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Test Suite

Description

A Test Suite element is a stereotyped Use Case element, used to aggregate one or more groups of tasks (Test Sets).

You link the Test Set elements to the Test Suite using Dependency connectors.

Toolbox icon

Learning Center topics

Alt+F1 | Enterprise Architect | Execution Analysis | Testpoints | Add Test Suite·

(c) Sparx Systems 2015 - 2016 Page 11 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

The Testpoints Window

The Testpoints Window is the hub where Test Domain constraints are composed. It is also the control that lets you
verify a particular Test Domain on a program. The program might be already running or it can be launched using the
control's Toolbar. Here you will also be able to see the results of your tests, as they happen. This control is
context-sensitive, responding to the selection of elements in the Project Browser or on a diagram. Depending on the
selection, tests can be carried out on a single class, a Use Case (Test Set) or a collection of Use Cases (A Test Suite).

Access

Ribbon Execute > Analyze > Testing > Show Testpoints Window

Menu Analyzer | Testpoints

Testpoint Window Columns

Column Usage

Tests Displays the name of the selected Testpoint object and the hierarchy of objects
beneath it.

The selected object can be a:

Class·
Operation·
Test Cut·
Test Set or·
Test Suite·

Id For an Operation, this column shows a Testpoint marker icon () when the
Analyzer has successfully bound this operation in the target application. If no icon
appears in this column during a run, it indicates that the model and code base may
not be synchronized; perhaps the signature of the function has changed, or the
operation may be a new method you are working on, that exists in the source code
but not yet in your model.

For a Testpoint, this column shows a generated id number. This id number is used
in trace output to indicate which constraint is being referenced.

Constraints A pencil icon () in this column indicates that one or more constraints are defined
for this Class or Operation.

Status During a test run, indicates these possible statuses:

() Failed - Constraint has evaluated as false one or more times.·

() Invalid Statement - Constraint failed to parse due to invalid syntax.·

() Variable not found - A referenced variable name was not found at the·
location where the constraint was evaluated.

(c) Sparx Systems 2015 - 2016 Page 12 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

No icon is shown if a constraint has Passed.

Evals During a test run, indicates the number of times the Execution Analyzer has
evaluated this constraint.

Passes During a test run, indicates the number of times the test passed.

Fails During a test run, indicates the number of times the test failed.

Last Run By Displays the username of the last person to run this test.

Last Run Date Displays the date and time this test was last evaluated.

Last Run Result Displays the result of the last test run.

Parent Collections Pane Lists any parent collections that include the selected object as part of their design.

Double-click this collection to make it the selected object in the left pane.

The Parent Collections pane can be hidden by clicking the Show / Hide Parent
Collections pane button on the Testpoints Window Toolbar.

Learning Center topics

Alt+F1 | Enterprise Architect | Execution Analysis | Testpoints |·
 - Add Class
 - Add Test Cut
 - Add Test Set
 - Add Test Suite

(c) Sparx Systems 2015 - 2016 Page 13 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Testpoints Toolbar

The Testpoints Window Toolbar provides options to execute configured tests on the currently selected Testpoint
object, stop a test run currently in progress, filter the displayed items, and save the results of a completed test run.

Access

Ribbon Execute > Analyze > Testing > Show Testpoints Window

Menu Analyzer | Testpoints

Testpoints toolbar options

Toolbar Button Action

Field showing the name of the currently selected Testpoint object.

Execute the test run.

Stop the test run currently in progress.

Toggle between showing all items and showing only those items that have
constraints defined.

Toggle between showing all items and showing only operations that have been
marked for inclusion in this Test Cut; this button is only enabled when a Test Cut
object is selected.

When a Test Cut is selected, each of the operations of its associated Class are
displayed with a checkbox; you use this checkbox to mark the operations that apply
to this Test Cut.

Click on the drop arrow next to this icon to display the 'Test Run Options' menu,
providing these options:

'Prefix Trace output With Function Call' - Prefix all trace output lines with the·
executing function name

'Enable Standard Breakpoints during Testing' - When not checked, the test run·
ignores any breakpoints in the current breakpoint set, and any attempts to set
breakpoints during the run are ignored

'View Trace output' - Display the 'Testpoints' tab of the System Output·
window

Click on this icon after completion of a test run to save the results to Test item on
the current object. Saved tests can be viewed using the Testing Workspace.

A prompt displays to select the Test Class - Unit, Integration, System, Inspection,
Acceptance or Scenario. Select the appropriate Test Class and click on the OK

(c) Sparx Systems 2015 - 2016 Page 14 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

button.

Display the Testpoint Management Help topic.

Show or hide the Parent Collections pane.

(c) Sparx Systems 2015 - 2016 Page 15 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Testpoint Editor

The Testpoint Editor is used to compose constraints for Classes and Operations. The types of constraints permitted are
dependent on the selected object. For Classes, the type will always be Invariant. For operations, the type can be either
Pre-Condition, Post-Condition or Line-Condition.

Invariants are evaluated by the Analyzer when any method called on an object of the selected Class type completes.
Pre-conditions are evaluated at the beginning of each call to the specified operation. Post-conditions are evaluated upon
completion of each call to the specified operation. Line-conditions are evaluated each time the specified line of code is
executed.

Access

Ribbon Execute > Analyze > Testing > Show Testpoints Window : Double-click on a
Class or Operation in the Testpoints window

Menu Analyzer | Testpoints : Double-click on a Class or Operation in the Testpoints

Constraint Group fields

Field Usage

Type The type of constraint for the selected Class or Operation:

Invariant - Evaluated after any method called on the specified Class has·
completed

Pre-Condition - Evaluated at the beginning of each call to a specific Operation·
Post-Condition - Evaluated after completion of each call to a specific·
Operation

Line-Condition - Evaluated upon execution of a specific line of code within an·
Operation

Offset For Line-Conditions only, the Line number within the specified operation upon
which to evaluate the constraint.

An offset value is automatically set if the Testpoint was created using the Code
Editor Context Menu.

Condition The constraint to be evaluated when this Testpoint is triggered. A status of pass or
fail will be recorded depending upon whether this constraint condition evaluates as
true or false.

Action on Fail Click on the drop-down arrow and select from the three options:

'Continue' - ignore failure of this constraint and continue execution·
'Break execution' - halt execution and display the Stack trace·
'Disable on fail' - do not execute the constraint again after failing once·

Evaluate When (Optional) An additional constraint which must be met before the main Testpoint
Condition is evaluated, providing greater control over test coverage.

(c) Sparx Systems 2015 - 2016 Page 16 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Trace Group fields

Field/Option/Button Action

Level Specifies when the trace statement (if defined) will be output. Available options
are:

'Fail Only' - Output trace statement only when this Testpoint condition fails·
'Always' - Output trace statement every time this Testpoint is evaluated·

Statement (Optional) A message to be output when this Testpoint is evaluated.

Variables currently in scope can be included in a trace statement output by
prefixing the variable name with a $ token for string variables, or a @ token for
primitive types such as int or long.

Output from a Trace Statement can be directed either to the 'Testpoints' tab of the
System Output Window, or to an external file, as configured by the Analyzer
Script for the parent Package.

Learning Center topics

Alt+F1 | Enterprise Architect | Execution Analysis | Testpoints |·
 - Edit Invariant
 - Edit Pre Condition
 - Edit Post Condition

(c) Sparx Systems 2015 - 2016 Page 17 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Testpoint Constraints

A Constraint is typically composed using local and member variables in expressions, separated by operators to define
one or more specific criteria that must be met. A constraint must evaluate as true to be considered as Passed. If a
constraint evaluates as false, it is considered as Failed.

Any variables referenced within the constraint must be in scope at the position where the Testpoint or Breakpoint is
evaluated.

General/Arithmetic Operators

Operator Description

+ Add

Example: a + b > 0

- Subtract

Example: a - b > 0

/ Divide

Example: a / b == 2

* Multiply

Example: a * b == c

% Modulus

Example: a % 2 == 1

() Parentheses - Used to define precedence in complex expressions.

Example: ((a / b) * c) <= 100

[] Square Brackets - Used for accessing Arrays.

Example: Names[0].Surname == "Smith"

. Dot operator - Used to access member variables of a Class.

Example: Station.Name == "Flinders"

-> Alternative notation for the Dot operator.

Example: Station->Name == "Flinders"

Comparison Operators

Operator Description

= Equal To

(c) Sparx Systems 2015 - 2016 Page 18 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

Example: a = b

== Equal To

Example: a == b

!= Not Equal To

Example: a != b

<> Not Equal To

Example: a <> b

> Greater Than

Example: a > b

>= Greater Than or Equal To

Example: a >= b

< Less Than

Example: a < b

<= Less Than or Equal To

Example: a <= b

Logical Operators

Operator Description

AND Logical AND

Example: (a >= 1) AND (a <= 10)

OR Logical OR

Example: (a == 1) OR (b == 1)

Bitwise Operators

Operator Description

& Bitwise AND

Example: (1 & 1) = 1

(1 & 0) = 0

| Bitwise OR

Example: (1 | 1) = 1

(c) Sparx Systems 2015 - 2016 Page 19 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

(1 | 0) = 1

^ Bitwise XOR (exclusive OR)

Example: (1 ^ 1) = 0

(1 ^ 0) = 1

Additional Examples

Example Description

((m_nValue &
0xFFFF0000) == 0)

Use a Bitwise AND operator (&) with a hexadecimal value as the right operand to
test that no bits are set in high order bytes of the variable.

((m_nValue &
0x0000FFFF) == 0)

Use a Bitwise AND operator (&) with a hexadecimal value as the right operand to
test that no bits are set in low order bytes of the variable.

m_value[0][1] = 2 Accessing a multi-dimensional array

a AND (b OR c) Combining AND and OR operators, using parentheses to ensure precedence. In this
example, variable 'a' must be true, and either 'b' or 'c' must be true.

Notes

String comparisons are case-sensitive·

Learning Center topics

Alt+F1 | Enterprise Architect | Execution Analysis | Testpoints | About Constraints·

(c) Sparx Systems 2015 - 2016 Page 20 of 21 Created with Enterprise Architect

User Guide - Testpoints 15 July, 2016

(c) Sparx Systems 2015 - 2016 Page 21 of 21 Created with Enterprise Architect

	Testpoints
	Test Domain Diagram
	Test Cut
	Test Set
	Test Suite

	The Testpoints Window
	Testpoints Toolbar
	Testpoint Editor
	Testpoint Constraints

