
Executable State
Machines

Enterprise Architect
User Guide Series

Author: Sparx Systems

Date: 15/07/2016

Version: 1.0

CREATED WITH

Table of Contents

Executable State Machines 3
Modeling Executable Statemachines 5
Executable StateMachine Artifact 10
Code Generation for Executable State Machines 12
Debugging Execution of Executable State Machines 15
Execution and Simulation of Executable State Machines 17
Example Executable State Machine 18
Deferred Event Pattern 22
States With Multiple State Regions 28
Entry and Exit Points (Connection Point References) 29

User Guide - Executable State Machines 15 July, 2016

Executable State Machines

Executable State Machines provide a powerful means of rapidly generating, executing and simulating complex state
models. In contrast to dynamic simulation of State Charts using Enterprise Architect's Simulation engine, Executable
State Machines provide a complete language-specific implementation that can form the behavioral 'engine' for multiple
software products on multiple platforms. Visualization of the execution uses and integrates seamlessly with the
Simulation capability. Evolution of the model now presents fewer coding challenges. The code generation, compilation
and execution is taken care of by Enterprise Architect. For those having particular requirements, each language is
provided with a set of code templates. Templates can be customized by you to tailor the generated code in any ways you
see fit.

These topics will introduce you to the basics of modeling Executable State Machines and tell you how to generate and
simulate them.

Overview of Building and Executing State Machines

Building and using Executable State Machines is quite straight forward, but does require a little planning and some
knowledge of how to link the different components up to build an effective executing model. Luckily you do not have to
spend hours getting the model right and fixing compilation errors before you can begin visualizing your design.

Having sketched out the broad mechanics of your model, you can generate the code to drive it, compile, execute and
visualize it in a matter minutes. These points summarize what is required to start executing and simulating State
Machines.

Facility Description

Build Class and State
models

The first task is to build the standard UML Class and State models that describe the
entities and behavior to construct. Each Class of interest in your model should have
its own State Machine that describes the various states and transitions that govern
its overall behavior.

Create an Executable
Statemachine Artifact

Once you have modeled your Classes and State models, its time to design the
Executable Statemachine Artifact. This will describe the Classes and objects
involved, and their initial properties and relationships. It is the binding script that
links multiple objects together and it determines how these will communicate at
runtime. Note that it is possible to have two or more objects in an Executable
Statemachine Artifact as instances of a single Class. These will have their own state
and behavior at run-time and can interact if necessary.

Generate Code and Whether it is Javascript, C++, Java or C# that you need, EA's engineering

(c) Sparx Systems 2015 - 2016 Page 3 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Compile capabilities provide you with a powerful tool, allowing you to regenerate the
executable at any time, and without the loss of any customized code you may have
made. This is a major advantage over a project's lifetime. It is probably also worth
noting that the entire code base generated is independent and portable. In no way is
the code coupled with any infrastructure used by the simulation engine.

Execute State Machines So how do we see how these state machines behave. One method is to build the
code base for each platform, integrate it in one or more systems, examining the
behaviors, 'in-situ', in perhaps several deployment scenarios. Or we can execute it
with Enterprise Architect. Whether it is Java, Javascript, C, C++ or C#, EA will
take care of creating the runtime, the hosting of your model, the execution of it's
behaviors and the rendition of all state machines.

Visualize State Machines Executable Statemachine visualization integrates with Enterprise Architect's
Simulation tools. Watch state transitions as they occur on your diagram and for
which object(s). Easily identify objects sharing the same state. Importantly, these
behaviors remain consistent across multiple platforms. You can also control the
speed at which the machines operate to better understand the timeline of events.

Debug State Machines When states should change but do not, when a transition should not be enabled but
is, when the behavior is in short undesirable and not immediately apparent from the
model, we can turn to debugging. Enterprise Architect's Visual Execution
Analyzer comes with debuggers for all the languages supported by Executable
State Machine code generation. Debugging provides many benefits, one of which
might be to verify / corroborate the code attached to behaviors in a State Machine
to ensure it is actually reflected in the executing process.

(c) Sparx Systems 2015 - 2016 Page 4 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Modeling Executable Statemachines

Most of the work required to model an Executable State Machine is standard UML based modeling of Classes and State
models. There are a couple of conventions that must be observed to ensure a well formed code base. The only novel
construct is the use of a stereotyped Artifact element to form the configuration of an Executable State Machine instance
or scenario. The Artifact is used to specify details such as:

The code language (Javascript, C#, Java, C++ including C)·
The Classes and State Machines involved in the scenario·
The instance specifications including run-state; note that this could include multiple instances of the same State·
Machine, for example where a 'Player' Class is used twice in a Tennis Match simulation.

Basic Modeling Tools and Objects for Executable State Machines

This table details the primary modeling elements used when building Executable State Machines.

Object Details

Classes and Class
Diagrams

Classes define the object types that are relevant to the State Machine(s) being
modeled. For example, in a simple Tennis Match scenario you might define a
Player, a Match, a Hit and an Umpire Class. Each will have its own State
Machine(s) and at runtime will be represented by object instances for each involved
entity. See the UML modeling guide for more information on Classes and Class
diagrams.

State Machines For each Class you define that will have dynamic behavior within a scenario, you
will typically define one or more UML State Machines. Each State Machine will
determine the legal state-based behavior appropriate for one aspect of the owning
Class. For example, it is possible to have a State Machine that represents a Player's
emotional state, one that tracks his current fitness and energy levels, and one that
represents his winning or losing state. All these State Machines will be initialized
and started when the State Machine scenario begins execution.

Executable StateMachine
Artifact

This stereotyped Artifact is the core element used to specify the participants,
configuration and starting conditions for an Executable State Machine. From the
scenario point of view it is used to determine which Instances (of Classes) are
involved, what events they might Trigger and send to each other, and what starting
conditions they operate under.

From the configuration aspect, the Artifact is used to set up the link to an analyzer
script that will determine output directory, code language, compilation script and
similar. Right clicking on the Artifact will allow you to generate, build, compile
and visualize the real time execution of your State Machines.

State Machine Constructs Supported

This table details the State Machine constructs supported and any limitations or general constraints relevant to each type.

Construct Description

State Machines Supported

Simple State Machine: State Machine has one region.

(c) Sparx Systems 2015 - 2016 Page 5 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Orthogonal State Machine: State Machine contains multiple regions.

Top level region (owned by State Machine) activation semantics:

 Default Activation: When the State Machine starts executing.

 Entry Point Entry: Transitions from Entry Point to vertices in the contained
regions.

Note 1: In each Region of the State Machine owning the Entry Point, there is at·
most a single Transition from the entry point to a Vertex within that Region.

Note 2: This State Machine can be referenced by a Submachine State.·
Connection point reference should be defined in the Submachine State as
sources/targets of transitions. The Connection point reference represents a
usage of an Entry/Exit Point defined in the State Machine and referenced by
the Submachine State.

Not Supported

Protocol State Machine

State Machine Redefinition

States These State types are supported:

Simple State: has no internal Vertices or Transitions.·
Composite State: contains exactly one Region.·
Orthogonal State: contains multiple Regions.·
Submachine State: refers to an entire State Machine·

Composite State Entry Supported.

Default Entry·
Explicit Entry·
Shallow History Entry·
Deep History Entry·
Entry Point Entry·

Substates Supported.

Sub States and Nested Sub States.

Entry and Exit semantics where transition covers multiple nested levels of states
will obey correct execution of nested behaviors (such as OnEntry and OnExit).

Transitions support Supported:

External Transition·
Local Transition·
Internal Transition (draw a self Transition and change Transition kind to·
Internal)

Completion Transition and Completion Events·
Transition Guards·
Compound Transitions·
Firing priorities and selection algorithm·

For further details, refer to the UML Specification.

(c) Sparx Systems 2015 - 2016 Page 6 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Trigger and Events An Executable State Machine supports event handling only for Signals.

To use Call, Timing or Change Event types you need to define an outside
mechanism to generate signals based on these events.

Signal Supported.

Attributes can be defined in Signals; the value of the attributes can be used as event
arguments in Transition Guards and Effects.

For example, this is the code set in the effect of a transition in C++:

 if(signal->signalEnum == ENUM_SIGNAL2)

 {

 int xVal = ((Signal2*)signal)->myVal;

 }

Signal2 is generated as this code:

 class Signal2 : public Signal{

 public:

 Signal2(){};

 Signal2(std::vector<String>& lstArguments);

 int myVal;

 };

Note: Further details can be found by generating an Executable State Machine and
referring to the generated 'EventProxy' file.

Initial Supported.

An initial Pseudostate represents a starting point for a Region; It is the source for at
most one Transition;There can be at most one initial Vertex in a Region.

Regions Supported.

Default Activation & Explicit Activation:

Transitions terminate on the containing state:

If initial Pseudostate is defined in the Region: Default activation;·
If no initial Pseudostate is defined, region will remain inactive and the·
containing state is treated as a Simple state.

Transition terminate on one of the region's contained vertices: Explicit·
activation. This will result in the default activation of all of its orthogonal
Regions, unless those Regions are also entered explicitly (multiple orthogonal
Regions can be entered explicitly in parallel through Transitions originating
from the same fork Pseudostate).

For example, if there are 3 regions defined for a Orthogonal State, if RegionA and
RegionB have initial Pseudostate, then RegionC is explicitly activated, default
Activation applies to RegionA and RegionB; the containing state will have 3 active
regions.

Choice Supported.

Guard Constraints on all outgoing Transitions are evaluated dynamically, when the
compound transition traversal reaches this Pseudostate.

Junction Supported.

Static conditional branch: guard constraints are evaluated before any compound
transition is executed.

(c) Sparx Systems 2015 - 2016 Page 7 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Fork / Join Supported.

Non-threaded, each active region move one step alternatively based on completion
event pool mechanism.

EntryPoint / ExitPoint
Nodes

Supported.

Non-threaded for orthogonal state or orthogonal statemachine; each active region
move one step alternatively based on completion event pool mechanism.

History Nodes Supported.

DeepHistory: represents the most recent active state configuration of its owning
State.

ShallowHistory: represents the most recent active substate of its containing State,
but not the substates of that substate.

Deferred Events Supported.

Draw a self Transition and change Transition kind to Internal. Type 'defer();' in the
'Effect' field for the transition.

Connection Point
References

Supported.

A connection point reference represents a usage (as part of a submachine State) of
an Entry/Exit Point defined in the StateMachine referenced by the Submachine
State. Connection point references of a submachine State can be used as
sources/targets of Transitions. They represent entries into or exits out of the
StateMachine referenced by the Submachine State.

State behaviors Supported.

State entry, doActivity and exit behavior can be defined as Operations on a state.
The code that will be used for each behavior is entered into the 'initial code' field by
default. Note that this could be changed to 'Behavior' field via customization of the
generation template.

The doActivity behavior generated will be run to completion before proceeding.
The code is not concurrent as to other entry behavior; the doActivity behavior is
implemented as execute in sequence after entry behavior.

References to Behaviors within other Contexts/Classes

If the Submachine State references behavior elements outside the current context or Class, you must add an <<import>>
connector from the current context Class to the container context Class. For example:

 Submachine State S1 in Class1 refers to StateMachine ST2 in Class2

Therefore, we add an <<import>> connector from Class1 to Class2 in order for Executable StateMachine code
generation to generate code correctly for Submachine State S1. (On Class 1, click on the Quick Linker arrow and drag to
Class 2, then select 'Import' from the menu of connector types.)

Reusing Executable Statemachine Artifacts

You can create multiple models or versions of a component using a single executable Artifact. An Artifact representing a
resistor, for example, could be re-used to create both a foil resistor and a wire wound resistor. This is likely the case for
similar objects who although represented by the same classifier, typically exhibit different run states. A property named
'resistorType' taking the value 'wire' rather than 'foil' might be all that is required from a modeling point of view. The

(c) Sparx Systems 2015 - 2016 Page 8 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

same State Machines can then be re-used to test behavioral changes that might result due to variance in run-state. This is
the procedure:

Step Action

Create or open component
diagram

Open a component diagram to work on. This might be the diagram that contains
your original artifact.

Select the Executable State
Machine to copy

Now find the original Executable Statemachine Artifact in the Project Browser.

Create the New Component Whilst holding the Ctrl key, drag the original artifact on to your diagram. You will
be prompted with two questions.

The answer to the first is Object and to the second All. Rename the artifact to
differentiate it from the original and then proceed to alter its property values.

(c) Sparx Systems 2015 - 2016 Page 9 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Executable StateMachine Artifact

An Executable StateMachine Artifact is key to generating StateMachines that can interact with each other. It specifies
the objects that will be involved in a simulation, their state and how they connect.

Creating the Properties of an Executable StateMachine

Each Executable StateMachine scenario involves one or more StateMachines. The StateMachines included are specified
by UML Property elements; each Property will have a UML Classifier (Class) that determines the StateMachine(s)
included for that type. Multiple types included as multiple Properties can end up including many StateMachines, which
are all created in code and initialized on execution.

Action Description

Drop a Class from the
Project Browser on to the
<<Executable
Statemachine>> Artifact

The easiest way to define properties on an Executable StateMachine is to drop the
Class onto the Executable StateMachine from the Project Browser. On the dialog
that is shown, select the option to create a Property. You can then specify a name
describing how the Executable StateMachine will refer to this property.

Note: Depending on your options, you might have to hold down the Ctrl key to
choose to create a property. This behavior can be changed at any time using the
'Hold Ctrl to Show this dialog' checkbox.

Use and Connect Multiple
UML Properties

An Executable StateMachine describes the interaction of multiple StateMachines.
These can be different instances of the same StateMachine, different StateMachines
for the same instance, or completely different StateMachines from different base
types. To create multiple properties that will use the same StateMachine, drop the
same Class onto the Artifact multiple times. To use different types, drop different
Classes from the Project Browser as required.

Defining the initial state for properties

The StateMachines run by an Executable StateMachine will all run in the context of their own Class instance. An
Executable StateMachine allows you to define the initial state of each instance by assigning property values to various
Class attributes. For example you might specify a Player's age, height, weight or similar if these properties have
relevance to the scenario being run. By doing this it is possible to set up detailed initial conditions that will influence
how the scenario plays out.

Action Description

Set Property Values dialog The dialog for assigning property values can be opened by right-clicking on a
Property and selecting 'Features & Properties | Set Property Values', or by using the
keyboard shortcut Ctrl+Shift+R.

Assign a value The 'Set Property Values' dialog allows you to define values for any attribute
defined in the original Class. To do this, select the variable, set the operator to '='
and enter the required value.

Defining relationships between properties

(c) Sparx Systems 2015 - 2016 Page 10 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

In addition to describing the values to assign to variables owned by each property, an Executable StateMachine allows
you to define how each property can reference others based on the Class model that they are instances of.

Action Description

Create a connector Connect multiple properties using the Connector relationship from the Composite
toolbox.

Alternatively, use the Quicklinker to create a relationship between two Properties
and select 'Connector' as the relationship type.

Map to Class model Once a connector exists between two properties, you can map it back to the
Association it represents in the Class model. To do this, select the connector and
use the keyboard shortcut Ctrl+L. This shows the 'Choose an Association' dialog.

This allows the generated State Machine to send signals to the instance filling the
role specified in the relationship during execution.

(c) Sparx Systems 2015 - 2016 Page 11 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Code Generation for Executable State Machines

The code generated for an Executable State Machine is based on its language property. This might be Java, C, C++, C#
or Javascript. Regardless, Enterprise Architect generates the appropriate code, which is immediately ready to compile
and run. There are no manual interventions necessary before you run it. In fact after the initial generation, any
Executable State Machine can be generated, built and executed at the click of a button.

Generating Code

The context menu of an Executable State Machine provides special code generation commands for generating the State
Machine. The first option is to generate the code, which will display this dialog.

Feature Description

Set Generation Path The generation dialog allows you to enter a target directory to which all source files
will be generated.

Set Framework Path Each supported language provides an option to define the path to the target
frameworks that are required to compile and run the generated code. For more
information, see the Languages Supported section.

Files Created Regardless of the selected language, the code generation of an execution analyzer
will create a similar set of files as shown here for C#.

(c) Sparx Systems 2015 - 2016 Page 12 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

In addition, there are also files generated for each Class used by the Executable
State Machine.

Execution Analyzer Scripts Each Executable State Machine that is generated will also generate an Execution
Analyzer script. This allows the generated code to be compiled either from the
Execution Analyzer window or using the Executable State Machine context menu.

Generation Output Where generating progress messages, warnings or errors are displayed in the
'Executable State Machine Output' page of the System Output window.

Compiling Code

The code generated by an Executable Statemachine can be compiled by Enterprise Architect in one of three ways.

Method Description

Execution Analyzer Script The generated execution analyzer script includes a command to build the source
code. This means that when it is active you can compile directly using the
execution analyzer script, including using the built-in shortcut key Ctrl+Shift+F12.

Compile Context Menu
Command

The 'Code Generation' context menu of an Executable State Machine provides a
'Compile' command, allowing you to compile the code that already exists in the
target directory. This can be used directly after calling 'Generate', or if you have
modified the generated code in any way.

Generate, Build and Run
Command

The 'Code Generation' context menu of an Executable State Machine provides a
shortcut to allow changes made to a State Machine to be quickly tested. This
command updates the code before compiling it, and then starts the simulation as
discussed in detail in a later topic.

Compiler Output When compiling, all output from the compiler is shown on the Build page of the
System Output window. This also allows you to double-click on any compiler
errors to open a source editor to the appropriate line.

Leveraging existing code

Executable Statemachines generated and executed by Enterprise Architect can leverage existing code for which no Class
model exists. To do this you would create an abstract Class element naming only the operations to call in the external
codebase. You would then create a generalization between this interface and the Statemachine Class, adding the required
linkages manually in the Analyzer Script. For Java you might add .jar files to the Class path. For native code you might
add a .dll to the linkage.

(c) Sparx Systems 2015 - 2016 Page 13 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Languages Supported

An Executable Statemachine supports code generation for these platform languages:

Language Platform Languages

Microsoft Native C·
C++·

Microsoft .NET C#·

Scripting JavaScript·

Oracle Java Java·

(c) Sparx Systems 2015 - 2016 Page 14 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Debugging Execution of Executable State Machines

Creation of Executable State Machines provides benefits even after the generation of code. By using the execution
analyzer, Enterprise Architect is able to connect to the generated code. As a result you are able to visually debug and
verify the correct behavior of the code; the exact same code generated from your State Machines, demonstrated by the
simulation and ultimately incorporated in a real world system.

Debugging a State Machine

Being able to debug an Executable State Machine gives additional benefits. These benefits allow you to:

Interrupt the execution of the simulation and all executing State Machines.·
View the raw state of each State Machine instance involved in the simulation.·
View the source code and Call Stack at any point in time.·
Trace additional information about the execution state through the placement of tracepoints on lines of source code.·
Control the execution through use of actionpoints and breakpoints (break on error for example).·
Diagnose changes in behavior, due to either code or modeling changes.·

If you have generated, built and run an Executable State Machine successfully, you can debug it! The Analyzer Script
created during the generation process is already configured to provide debugging. To start debugging, simply start
running the Executable State Machine using the Simulation Control. Depending on the nature of the behavior being
debugged, we would probably set some breakpoints first.

Breaking execution at a state transition

Like any debugger we can use breakpoints to examine the executing statemachine at a point in code. Locate a class of
interest in either the diagram or project browser and press F12 to view the source code. It is easy to locate the code for
state transitions from the naming conventions used during generation. If you wish to break at a particular transition,
locate the transition function in the editor and place a breakpoint marker by clicking in the left margin at a line within the
function. When you run the executable statemachine, the debugger will halt at this transition and you will be able to view
the raw state of variables for any state machines involved.

Breaking execution conditionally

Each breakpoint can take a condition and a trace statement. When the breakpoint is encountered and the condition
evaluates to True the execution will halt. Otherwise the execution will continue as normal. You compose the condition
using the names of the raw variables and comparing them using the standard equality, operands: < > = >= <=. eg:
(this.m_nCount > 100) and (this.m_ntype == 1)

To add a condition to a breakpoint you have set, right-click the breakpoint and select properties. By clicking the
breakpoint while holding the CTRL key, the properties can be quickly edited.

Tracing auxillary information

It is possible to trace information from within the statemachine itself using the TRACE clause; in an effect for example.
Debugging also provides trace features known as Tracepoints. These are simply breakpoints that, instead of breaking,
print trace statements when they are encountered. The output is displayed in the Simulation Control window. They can
be used as a diagnostic aid to show / prove the sequence of events and the order in which instances change state.

(c) Sparx Systems 2015 - 2016 Page 15 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Viewing the callstack

Whenever a breakpoint is encountered, the callstack is available. This is available from the Analyzer Menu. Use this to
determine the order in which the execution is taking place.

(c) Sparx Systems 2015 - 2016 Page 16 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Execution and Simulation of Executable State Machines

One of the many features of Enterprise Architect is its ability to perform simulations. An Executable State Machine
generated and built in Enterprise Architect can hook into the Simulation feature to visually demonstrate the live
execution of the State Machine Artifact.

Starting a simulation

The Simulation Control toolbar provides a Search button that allows you to select the Executable Statemachine
Artifact to run. The control also maintains a drop-down list of the most recent Executable State Machines for you to
choose from. You can also use the context menu on an Executable Statemachine Artifact itself to initiate the simulation.

Controlling speed

The Simulation Control provides a speed setting. You can use this to adjust the rate at which the simulation executes.
The speed is represented as a value between 0 and 100. (Higher value is faster). A value of zero will cause the simulation
to halt after every step (requires using the toolbar controls to manually step the simulation).

Notation for active states

As the executable statemachine executes, the relevant statemachine diagrams are displayed. The display is updated at the
end of every step-to-completion cycle. You will notice that only the active state for the instance completing a step is
highlighted. The other states remain dimmed.

It is easy to identify which instance is in which state as the states will be labeled with the name of any instance currently
in that particular state. If more than one artifact property of the same type share the same state, the state will have two
labels naming each property.

(c) Sparx Systems 2015 - 2016 Page 17 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Example Executable State Machine

Example Class Model

This image shows a sample Class model that is used by the State Machines to follow.

TurbineController

+ simulationLength: int
+ tickLength: double

Turbine

+ currentHeat: double
+ heatDisipation: double
+ heatProduction: double
+ heatTolerance: double

+ cool(int): void
+ warm(int): void

Owns +master

Next
+next

Example State Machines

These two diagrams show the definitions of two State Machines. The first references another State Machine of the same
type, while the second drives any instances of the first that exist.

stm RunningState

Off

On

[Speed]

[Heat]

Initi al

Initi al

Heating

TICK [currentHeat < heatTolerance] /
warm(1)

History

Initi al

Low

Medium

Standby

TICK /
cool(1)

SPEEDUP /
defer();

SPEEDDOWN /
defer();

High

START

SPEEDUP

ACTIVATE

SPEEDUP

TICK [currentHeat >= heatTolerance]
/%SEND_EVENT("ACTIVATE",

CONTEXT_REF(next))%;

SHUTDOWN

SPEEDDOWN

SPEEDDOWN

And the top level controller.

(c) Sparx Systems 2015 - 2016 Page 18 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

stm TurbineControl

In itial

Start

entry / entry

Stop

entry / entry

Run

do / do

Terminate

[simulationLength <= 0]

[simulationLength > 0]
/%BROADCAST_EVENT("TICK")%;

/%SEND_EVENT("ACTIVATE", CONTEXT_REF(master))%;

Example Artifacts

From the example diagrams above, we can create Executable State Machines as shown here.

(c) Sparx Systems 2015 - 2016 Page 19 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

«executable statemachine»
FourUniqueTurbineTest

controller:
TurbineController

simulationLength = 200
tickLength = 1

turbine1: Turbine

currentHeat = 0
heatProduction = 1
heatDisipation = 1
heatTolerance = 10

turbine2: Turbine

currentHeat = 0
heatProduction = 0.5
heatDisipation = 2
heatTolerance = 12

turbine3: Turbine

currentHeat = 0
heatProduction = 2
heatDisipation = 0.5
heatTolerance = 15

turbine4: Turbine

currentHeat = 0
heatProduction = 2
heatDisipation = 2
heatTolerance = 8

«executable statemachine»
PairedTurbineTest

controller:
TurbineController

simulationLength = 100
tickLength = 1

a: Turbine

currentHeat = 0
heatProduction = 1
heatDisipation = 1
heatTolerance = 10

b: Turbine

currentHeat = 0
heatProduction = 1
heatDisipation = 1
heatTolerance = 10

:Owns

:Next

:Next

:Next

:Next

:Owns

:Next

:Next

Note how property values have been set for each property, and the links between them identify the relationships that
exist in the Class model.

Simulation Results

When running, Enterprise Architect will highlight the currently active states in any statemachines. Where multiple
instances of a statemachine exist, it will also show the names of each instance in that state.

(c) Sparx Systems 2015 - 2016 Page 20 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

(c) Sparx Systems 2015 - 2016 Page 21 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Deferred Event Pattern

Enterprise Architect supports the Deferred Event pattern.

To create a Deferred Event in a State:

Create a self transition for the State.1.

Change the 'kind' of the transition to 'internal'.2.

Specify the Trigger to be the event you want to defer.3.

In the 'Effect' field, type 'defer();'.4.

To Simulate:

From the main menu, select 'Analyzer | Simulator | Open Simulator and Simulator Event Window'.

The Simulator Events window allows you to trigger events by double clicking on a trigger in the 'Waiting Triggers'
column.

The Simulation window shows the execution in text. You can type 'dump' in the Simulator command line to show how
many events are deferred in the queue; it might resemble this:

[24850060] Event Pool: [NEW,NEW,NEW,NEW,NEW,]

Deferred Event Example

This example shows a model using deferred events, along with the Simulation Events window showing all available
Events.

We firstly setup the contexts (the class elements containing the state machines), simulate in a simple context and raise
the event from outside of it; then simulate in a client-server contexts with the send event mechanism.

Create Context and Statemachine

Create the server context

TransactionServerTestClient
+server

Create a class diagram,

a class element TransactionServer, add to which a statemachine ServerStateMachine.

a class element TestClient, add to which a statemachine ClientStateMachine.

an association from TestClient to TransactionServer, target role named server

Modeling for ServerStateMachine

stm ServerStateMachine

Final

busy

NEW_REQUEST /
defer();

idle

In itial

QUIT

NEW_REQUEST

AUTHORIZED

(c) Sparx Systems 2015 - 2016 Page 22 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Put an Initial Node Initial onto the statemachine diagram, transaction to·
a state idle, transition(with event NEW_REQUEST as trigger) to·
a state busy,·

 transition (with event QUIT as trigger) to a Final State Final

 transition (with event AUTHORIZED as trigger) to idle

 transition (with event NEW_REQUEST as trigger, defer(); as effect) to busy

Modeling for ClientStateMachine

stm ClientStateMachine

In itial

State1

State2

State3

State4

Final

State5

State0

/%SEND_EVENT("AUTHORIZED", CONTEXT_REF(server))%;

/%BROADCAST_EVENT("NEW_REQUEST")%;

RUN_TEST

/%SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;

/%SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;

Put an Initial Node Initial onto the statemachine diagram, transaction to·
a state State0, transition(with event RUN_TEST as trigger) to·
a state State1, transition(effect: %SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;) to·
a state State2, transition(effect: %SEND_EVENT("NEW_REQUEST", CONTEXT_REF(server))%;) to·
a state State3, transition(effect: %BROADCAST_EVENT("NEW_REQUEST")%;) to·
a state State4, transition(effect: %SEND_EVENT("AUTHORIZED", CONTEXT_REF(server))%;) to·
a state State5, transition to·
a Final State Final·

Simulation in a simple context

Create the Simulation Artifact

(c) Sparx Systems 2015 - 2016 Page 23 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

«executable statemachine»
Simulation with Deferred Event

server: TransactionServer

Create an Executable StateMachine artifact with name Simulation with Deferred Event and Language set to·
JavaScript

Enlarge it; Ctrl + Drag TransactionServer, paste as a property with name server·

Run Simulation

Select the artifact | select Ribbon Simulate | Build & Run | Specify a directory for you code (NOTE: all the files in·
the directory will be deleted before simulation started) | Generate

Open Simulation Event window by Ribbon Simulate | Triggers·

Once simulation started, idle will be the active state.

Trigger NEW_REQUEST by double click it in the event window; idle will be exited and busy is activated.·

Trigger NEW_REQUEST by double click it in the event window again; busy stay as activated, an instance of·
NEW_REQUEST is appended in the event pool.

Trigger NEW_REQUEST by double click it in the event window again; busy stay as activated, an instance of·
NEW_REQUEST is appended in the event pool.

Type dump in the Simulation command line, you can see that the event pool has two instances of NEW_REQUEST.·

(c) Sparx Systems 2015 - 2016 Page 24 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Trigger AUTHORIZED by double click it in the event window. Then following things will happen:·
busy was exited and idle became active1.

a NEW_REQUEST event is retrieved from the pool and idle was exited and busy became active2.

Type "dump" in the simulation command line,

There is only one instance of NEW_REQUEST in the event pool·

Interactive simulation via Send/Broadcast Event

Create the Simulation Artifact

«executable statemachine»
Interactive Simulation with Deferred Event

server: TransactionServerclient: TestClient

(c) Sparx Systems 2015 - 2016 Page 25 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Create an Executable StateMachine artifact with name Interactive Simulation with Deferred Event and Language set·
to JavaScript. Enlarge it

Ctrl + Drag TransactionServer, paste as a property with name server·
Ctrl + Drag TestClient, paste as a property with name client·
Create a connector from client to server·

Run Interactive Simulation

Launch the simulation in the same way as the simple context;

Once the simulation started, the client is staying at State0, the server is staying at idle.

Trigger RUN_TEST by double click it in the event window. Then event NEW_REQUEST will be triggered 3 times (by
SEND_EVENT / BROADCAST_EVENT), and AUTHORIZED will be triggered once by SEND_EVENT.

(c) Sparx Systems 2015 - 2016 Page 26 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Type "dump" in the simulation command line, there are one instance of NEW_REQUEST left in the event pool. The
result match our manually triggering test.

(c) Sparx Systems 2015 - 2016 Page 27 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

States With Multiple State Regions

A State is activated when there is a transition to the State, or a transition to a State within the State. See the following
example:

State1 is activated because of The_Transition going to State3.·
When a State is activated, all regions within the State which can be activated, will be. A region can be activated if there
is an Initial element, or if there is a transition from outside the State into one of the region's States. All activating regions
run in no particular order.

Region1 is activated because of The_Transition going to State3.·
Region2 is activated because there is an Initial element.·

(c) Sparx Systems 2015 - 2016 Page 28 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

Entry and Exit Points (Connection Point References)

Enterprise Architect provides support for Entry/Exit points, and connection point references. In the below example,
State1 has two triggers, TRIGGER_BY_INITIAL and TRIGGER_BY_ENTRYPOINT leading to State2 and it's
EntryPoint1.

State2 is typed by another StateMachine (StateMachine2) using Ctrl+L when State2 is selected. StateMachine2 is as
follows:

To link EntryPoint1 with EntryPoint2, and ExitPoint1 with ExitPoint2, double click on EntryPoint1 and tick
EntryPoint2 and the same for the exit point:

(c) Sparx Systems 2015 - 2016 Page 29 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

If we ran this example and triggered TRIGGER_BY_INITIAL, Region A will activate and hit Initial -> State4 ->
State5 -> ExitPoint2.

If we ran this example and triggered TRIGGER_BY_ENTRYPOINT, both Region A and B will activate and hit all
States (3 to 10).

(c) Sparx Systems 2015 - 2016 Page 30 of 31 Created with Enterprise Architect

User Guide - Executable State Machines 15 July, 2016

(c) Sparx Systems 2015 - 2016 Page 31 of 31 Created with Enterprise Architect

	Executable State Machines
	Modeling Executable Statemachines
	Executable StateMachine Artifact
	Code Generation for Executable State Machines
	Debugging Execution of Executable State Machines
	Execution and Simulation of Executable State Machines
	Example Executable State Machine
	Deferred Event Pattern
	States With Multiple State Regions
	Entry and Exit Points (Connection Point References)

